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Abstract: - Avionics battery discharge regulator which derives power from battery and delivers power to load 
plays an important role in power conditioning unit. With the merits of high efficiency, stable transfer function 
and continuous input and output current, non-isolated weinberg converter is suitable for avionics battery 
discharge regulator. Improved peak current control strategy is put forward in order to achieve high current 
sharing accuracy and reliability. Based on the small signal model of three-module non-isolated weinberg 
converter system, the current and voltage controllers are designed. The system with the designed controllers 
operates stably in any operating conditions and achieves an excellent transient response and current sharing 
accuracy. 
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1 Introduction 

Power conditioning unit (PCU) is used to balance 
the power among each unit and keep the bus voltage 
constant. According to the bus voltage, PCU is 
separated into three categories: 28V, 42V and 100V. 
Avionics battery discharge regulator (BDR) which 
discharges power from battery and delivers power to 
load plays an important role in PCU. Non-isolated 
weinberg converter (NIWC) is suitable for battery 
discharge regulator due to the merits of high 
efficiency, no RHP zeroes and continuous input and 
output current. 

For the past few years, many scholars have done 
research on NIWC. Lei has deduced the small signal 
model of NIWC[1-2]. Ejea-Marti J established small 
signal model based on peak current control and 
analyzed the stability under small duty cycle[3-5]. 
However, small signal model and controller design 
method of parallel NIWC system haven’t been 
analyzed. 

In order to achieve high current sharing accuracy 
and reliability, this paper proposed improved peak 
current control strategy. Based on the 42V-level 
PCU, small signal model and controller design 
method of three-module NIWC system under 
current continuous mode (CCM) are proposed in 
this paper. 
 
 

2 Operating Principle  

The NIWC is shown in Fig.1. By controlling Q1 
and Q2 properly, couple inductor Lcouple and 

transformer T make the input and output current 
continuous. The input damping filter which consists 
of Lf, Cf1, Cf2, and Rf smoothes the input current, 
which makes current sampling convenient and the 
battery service life long. Maset E. have introduced 
the operating principle of NIWC[6-7]. 
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Fig. 1 Non-isolated Weinberg Converter (NIWC) 
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Fig. 2 Three-module NIWC system under peak current 
control 
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Considering the efficiency and reliability, three 
NIWCs in parallel supply power to main bus at 
rated condition 1200W. The control strategy should 
keep the bus voltage constant at 42V and the current 
sharing error lower than 1%. 

Control diagram of three-module NIWC system is 
shown in Fig. 2. In order to avoid the saturation of 
the transformer and enhance the current sharing 
accuracy and reliability, improved peak current 
control strategy which contains voltage loop, 
average current loop and peak current loop is 
proposed. The voltage loop whose output is the 
reference of average current loop stabilizes the bus 
voltage. The average current loop enhances current 
sharing accuracy significantly. Improved peak 
current control strategy is suitable for the system-
level applications which focus on the current 
sharing accuracy and integrity. 
 
 

3 Power Stage Model 

The input filter which is designed according to 
middlebrook theorem can be neglected in small 
signal model[8]. According to the state space 
averaging method, The power stage model of three-
module NIWC system can be easily established, as 
shown in Fig.3. Supposing the duty cycle 
disturbance of each module is equal, the inductor is 
divided by three, which is different from power 
stage model of single-module[9]. From Fig.3, the 
transfer functions are obtained. It should be noted 
that the power stage model is based on the current 
continuous mode (CCM). 
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Fig. 3 Power stage model of three-module NIWC system 

Three-module NIWC system is equivalent as 
buck converter whose inductance is 4L/3 in view of 
transfer function Gvd(s). So NIWC is easy to design . 
because the transfer functions don’t have RHP 
zeroes. 

 
 

4 Small Signal Model Of System 

The disturbance of duty cycle ˆ( )d t  can be 
expressed by [10]   

ˆ ˆ ˆ ˆ ˆ( ) [ ( ) ( ) ( ) ( )]m c out g g v outd t F i t i t F v t F v t         (2) 

Where 1/m a sF M T , 2( 2 1) / 8g sF D D T L   , 

(1 2 ) / 8v sF D T L  . ˆ ( )ci t  is control current, D is 
the sum of the duty circle of Q1 and Q2, sT  is half of 
the period of Q1. aM is the slope of the saw-tooth 
wave which is used for slope compensation. 

According to Eq.2, the small signal model of 
three-module NIWC system is proposed in Fig.4. 
The sampling coefficients of peak current and 
average current are divided by three, which is 
different from small signal model of single-module. 
Fg and Fv can be neglected due to the small current 
ripple and ˆ ( )inv t  also can be neglected. With this 
simplification, small signal model of the system is 
constructed in Fig.5. 
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Fig. 4 Small signal model of three-module NIWC system 
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Fig. 5 Modified small signal model of the system 

The transfer functions indicated in Fig.5 are defined as 
follows: 

Gv(s): error amplifier of voltage loop                     
Gi(s): error amplifier of average current loop 
Req1: sampling coefficient of peak current                 
Req2: sampling coefficient of average current 
Kv(s): sampling coefficient of output voltage               
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Fm: current modulator gain 
Gid(s): transfer function of ˆ ( )outi s to ˆ( )d s                  
Zout(s): output impedance function 
He1(s): transfer function describing the sampled-

data effect for peak current 
He2(s): transfer function describing the sampled-

data effect for average current 
The time delay and disability at half of the 

equivalent efficiency reflect in small signal model 
by introducing He1(s) and He2(s)[11]. 

2
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n z n
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                (3) 

Where /n sT  ， 2 /zQ   . 
 
 

5 Converter Design 

The controller should be designed to satisfy the 
performance requirements as follows: 
 Gain margin is higher than 10dB, 
 Phase margin is higher than 60°, 
 Close-loop output impedance is lower than 

50mΩ. 
When input voltage is 26V and output current is 

30A, the controller is harder to design than other 
conditions, so the controller is designed under this 
condition. Specifications of the system are described 
in Tab.1. 

Tab.1 System parameters 

Input voltage(Vin) 26V~38V 

Output current (Iout) 0A~30A 

Output voltage (Vout) 42V 

Switching frequency (f) 100kHz 

Output capacitor (C) 2mF 

Self inductance of couple inductor (L) 20uH 

sampling coefficient of output voltage (Kv) 6.4/42 

sampling coefficient of average current (Req2) 0.0587 

sampling coefficient of peak current (Req1) 0.333 

 

 

5.1 Current Controller Design 

The control object of average current loop is  

'
1

ˆ ( )( ) ˆ 1 ( ) ( )
out m id
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            (4) 

The loop gain of average current loop is 

'
2( ) ( ) ( ) ( )i i peak csT s G s A s K s                  (5) 

The uncompensated loop gain of current loop 
Tio(s) with unity compensator gain Gi(s) is depicted 
in Fig.6, from which it can be seen that the cut-off 
frequency is 19.4 kHz, the gain margin is 9.9dB and 
the phase margin is 92.1°. The DC gain of Tio(s) at 
low frequency isn’t high enough to reduce the stable 
error, so a low-frequency zero should be added to 
enhance the DC gain. |Tio(jω)|dB at high frequencies 
is higher than 0, which will amplify the high-
frequency noise. So high-frequency zeros should be 
added to improve the anti-interference ability. Based 
on the analysis above, single zero double poles 
compensator is chosen as current regulator. The 
current regulator, represented in Fig.2, is  

(1 / )( )
(1 / )
i zi

i
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K s
G s

s s
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                   (6) 

Where 2 1 21/ ( )i i i iK R C C  ， 1 21/zi i iR C  ，

1 2 1 1 2( ) /pi i i i i iC C R C C   . 
The parameters are 1 8iR k  , 2 10iR k  , 

1 240iC pF , 2 50iC nF . 
The compensated loop gain of current loop Ti(s) 

is also shown in Fig.6. For Ti(s), the cut-off 
frequency is 14.45kHz, the gain margin is 12.3dB 
and the phase margin is 91.5°.  
 

 

5.2 Voltage Controller Design 

The control object of voltage loop is 

'
2

( ) ( ) ( )ˆ
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The loop gain of voltage loop is 

( ) ( ) ( )v v i vT s G s A s K                      (8) 

The uncompensated loop gain of voltage loop 
Tvo(s) with unity compensator gain Gv(s) is depicted 
in Fig.7. In order to satisfy that the cut-off 
frequency of the voltage loop should be lower than 
that of current loop, the cut-off frequency of Tv(s) is 
designed to be 1kHz. In Fig.7, the Amplitude-
frequency Curve of Tvo(s) is lower than 0dB, which 
means that the system is unstable. In order to 
enhance the DC gain and stability, single zero single 
pole compensator is chosen as voltage regulator. 
The voltage regulator, represented in Fig.2, is 

(1 / )( ) v zv
v

K s
G s

s


                     (9) 
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Where 2 11/v v vK R C ， 1 11/zv v vR C  . 
The gain of Tvo(s) at 1kHz is -25.5dB. The cut-off 

frequency of Tv(s) is designed to be 1kHz, so 
20log(|Rv1/Rv2|)=25.5dB. If Rv2=10 kΩ, then Rv1≈300 
kΩ. The zero frequency of voltage regulator is 
designed to be 100Hz, so Cv1≈5.4 nF. 

The compensated loop gain of voltage loop Tv(s) 
is also shown in Fig.7. For Tv(s), the cut-off 
frequency is 1kHz, the gain margin is 35.5dB and 
the phase margin is 84.7°, which satisfies the 
requirements. 
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Fig. 6 Bode plot of current loop gain Ti(s) and Tio(s) 
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Fig. 7 Bode plot of voltage loop gain Tv(s) and Tvo(s) 

 
 

5.3 Analysis of  Closed-loop output 

impedance 
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Fig. 8 The system small signal model of output 
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Fig. 9 Bode plot of output impedance 

By introducing the disturbance of load current 
ˆ ( )loadi s , the small signal model of close-loop output 
impedance is shown in Fig.8. The transfer function 
of close-loop output impedance is 

' '
1 2

ˆ ( )( ) ˆ ( )
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                      (10) 

In Fig.9, the maximum output impedance is 
41.4mΩ, which satisfies the requirements. So NIWC 
has good load adjustment rate. 
 
 

6 Experimental Confirmation 

 
Fig.10 Experimental platform of three-module NIWC 

system 

A 1200W prototype has been built based on a 2 
layer power PCB to confirm the superiority of 
improved peak current control strategy and the 
rationality of controller design, as shown in Fig.10. 

Fig.11 shows drive signal, voltage of CT, DS 
voltage of MOSFET and primary current of couple 
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inductor when the input voltage is 32V. Under any 
conditions, the bus voltage is stable at 42V. 

VGS-Q1:[20V/div]

VCT:[30V/div]

VDS-Q1:[50V/div]

IL1:[10A/div]

Time:[5us/div]

Fig.11 Key waveforms of NIWC 

When the input voltage is 32V, Tab.2 represents 
the current sharing performance without current 
sharing strategy, table 3 shows the current sharing 
performance with peak current control strategy and 
table 4 exhibits the current sharing performance 
with improved peak current control strategy. The 
current sharing error is calculated according to 
Eq.11. 
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Where 
1

/
n

k

k

I n


  is the average output current, 

1
max[ ( / )]

n

i k

k

abs I I n


  is the maximum difference 

between the output current of each module and 
average output current. 

Tab.2 Current sharing performance without current 
sharing control strategy 

I1(A) I2(A) I3(A) CSerror% 

2.892 1.851 1.228 45.3% 

5.123 3.376 2.595 38.5% 

6.983 5.345 3.681 31.02% 

8.565 7.252 5.248 25.25% 

10.372 8.651 6.985 19.64% 

11.389 9.475 8.152 17.75% 

Tab.3 Current sharing performance with peak current 
control strategy 

I1(A) I2(A) I3(A) CSerror% 

2.332 2.023 1.679 16.52% 

3.921 3.825 3.291 10.55% 

5.875 5.328 4.805 10.1% 

7.561 6.936 6.484 8.11% 

9.413 8.541 8.174 8.08% 

10.353 9.451 9.212 7.04% 

Tab.4 Current sharing performance with improved peak 
current control strategy 

I1(A) I2(A) I3(A) CSerror% 

2.018 2.003 1.999 0.56% 

3.682 3.651 3.687 0.608% 

5.371 5.323 5.316 0.643% 

7.031 7.015 6.934 0.848% 

8.701 8.674 8.645 0.327% 

9.69 9.665 9.641 0.255% 

From Tab.2, 3, and 4, the conclusions can be 
drawn as: 
 The current sharing performance without 

current sharing strategy is the worst. 
 The current sharing performance with peak 

current control strategy is better, but still can’t 
satisfy the command 1%. 

 The current sharing performance with 
improved peak current control strategy satisfies 
the command 1% under any conditions. 

The conclusions above demonstrate the 
superiority of improved peak current control 
strategy. 

Vbus-ripple:[200mV/div]

Iload:[10A/div]

Time:[10ms/div]

 
Fig.12 Transient response for load changes from 20A to 

30A 

Fig. 12 shows the transient response of the output 
voltage when the load changes 10A (20A to 30A). 
The output voltage approaches to normal in about 
6.2ms with a little overshoot, and the peak-to-peak 
ripple of output voltage is 0.57V. Fig. 13 shows the 
transient response of the output current for each 
module when the load changes 10A (20A to 30A). 
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From Fig.12 and Fig.13, we can find that the system 
gains an excellent transient response and current 
sharing accuracy under improved peak current 
control strategy. 

 

Iload1:[5A/div]

Time:[2ms/div]

Iload2:[5A/div]

Iload3:[5A/div]

 
Fig.13 Transient current sharing performance for load 

changes from 20A to 30A 

 

 

7 Conclusion 
Based on three-module NIWC system, the power 

stage model is deduced. Improved peak current 
control strategy is employed to avoid the saturation 
of the transformer and enhance the current sharing 
accuracy and reliability. The current and voltage 
controllers are designed on the small signal model. 
Finally, The experimental results are given to verify 
that the system gains an excellent transient response 
and current sharing accuracy under improved peak 
current control strategy by a 1200W prototype. The 
current sharing strategy is suitable for the system-
level application which requests more on the current 
sharing accuracy and integrity. 
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